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Abstract. We investigate the all-or-nothing encryption paradigm which
was introduced by Rivest as a new mode of operation for block ciphers.
The paradigm involves composing an all-or-nothing transform (AONT)
with an ordinary encryption mode. The goal is to have secure encryption
modes with the additional property that exhaustive key-search attacks
on them are slowed down by a factor equal to the number of blocks in the
ciphertext. We give a new notion concerned with the privacy of keys that
provably captures this key-search resistance property. We suggest a new
characterization of AONTs and establish that the resulting all-or-nothing
encryption paradigm yields secure encryption modes that also meet this
notion of key privacy. A consequence of our new characterization is that
we get more efficient ways of instantiating the all-or-nothing encryption
paradigm. We describe a simple block-cipher-based AONT and prove it
secure in the Shannon Model of a block cipher. We also give attacks
against alternate paradigms that were believed to have the above key-
search resistance property.

1 Introduction

In this paper, we study all-or-nothing transforms in the context of the original
application for which they were introduced by Rivest [20]. The goal is to increase
the difficulty of an exhaustive key search on symmetric encryption schemes, while
keeping the key size the same and not overly burdening the legitimate users.

Background and Motivation. Block ciphers, such as DES, can be vulnera-
ble to exhaustive key-search attacks due to their relatively small key-sizes. The
attacks on block ciphers also carry over to symmetric encryption schemes based
on the block ciphers (hereafter called, encryption modes). One way to get better
resistance to key-search attacks, is to use a longer key (either with the existing
block cipher or with a next-generation block cipher such as AES). This, however,
can be an expensive proposition, since it would necessitate changing the existing
cryptographic hardware and software implementing these encryption modes. In
some cases, the preferred approach might be to squeeze a little more security out
of the existing encryption modes using some efficient pre-processing techniques.
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Rivest observed that with most of the popular encryption modes, it is possible
to obtain one block of the message by decrypting just one block of the ciphertext.
With the cipher-block-chaining mode (CBC) [18], for example, given any two
consecutive blocks of ciphertext, it is possible to decrypt a single value and
obtain one block of the message. Thus the time to check a candidate key is
that of just one block cipher operation. Such modes are said to be separable.
Rivest suggests designing strongly non-separable encryption modes. As defined
in [20], strongly non-separable encryption means that it should be infeasible
to determine even one message block (or any property of a particular message
block) without decrypting all the ciphertext blocks.

The all-or-nothing encryption paradigm was suggested as a means to achieve
strongly non-separable encryption modes. It involves using an all-or-nothing

transform (AONT) as a pre-processing step to an ordinary encryption mode.
As defined in [20], an AONT is an efficiently computable transformation, map-
ping sequences of blocks to sequences of blocks, with the following properties:

– Given the output sequence of blocks, one can easily obtain the original se-
quence of blocks.

– Given all but one of the output sequence of blocks, it is computationally
infeasible to determine any function of any input block.

It is necessary that an AONT be randomized so that a chosen input does not yield
a known output. Note that in spite of the privacy parallel in their definitions, an
AONT is distinct from an encryption scheme. In particular, there is no secret-
key information associated with an AONT. However, it is suggested that if the
output of an AONT is encrypted, with say the codebook mode (ie. a secret-keyed
block cipher applied block by block), then the resulting scheme will not only be
secure as an encryption scheme but also be strongly non-separable.

We are interested in encryption modes wherein an exhaustive key-search is
somehow dependent on the size of the ciphertext. This is the primary motivation
for using strongly non-separable modes. The intuition is that brute-force searches
on such encryption modes would be slowed down by a factor equal to the number
of blocks in the ciphertext. But does strong non-separability really capture this
property? A reason to believe otherwise is that the property we want is concerned
more with the privacy of the underlying key than that of the data. Consider
the (admittedly, contrived) example of an encryption mode that, in addition to
the encrypted message blocks, always outputs a block that is the result of the
underlying block cipher on the string of all 0s. Such a mode could turn out to
be strongly non-separable although it clearly does not possess the property we
desire: a key-search adversary can test any candidate key by decrypting just the
block enciphering the 0 string. One could think of more subtle ways for some
other “invariable information” about the key being leaked that would illustrate
this point more forcefully. Strong non-separability does capture some strong
(data-privacy) property, but that is not the one we are interested in. What we
need here instead is a suitable notion of key-privacy. We want encryption modes
that have this property, as well as the usual data-privacy ones.
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Our Notions and Model. We give a notion, called non-separability of keys,
that formalizes the inability of an adversary to gain any information about the
underlying key, without “decrypting” every block of the ciphertext. The notion
can be informally described through the following interactive protocol: an ad-
versary A is first given two randomly selected keys a0 and a1. A then outputs a
message x and gets back, based on a hidden bit b, the encryption y of x under
ab. We ask that it be infeasible for a hereafter “restricted” A to guess b correctly
with probability significantly more than 0.5. The restriction we put on A is in
limiting how it can use its knowledge of a0 and a1 in trying to guess b.

In order to make the above restriction meaningful, we describe our notion in
the Shannon Model of a block cipher [21]. This model has been used in similar
settings before [17, 1]. Roughly speaking, the model instantiates an independent
random permutation with every different key. We discuss the limitations of the
model and their implications to our results in Section 7.

We show that our notion captures our desired key-search resistance property.
That is, we prove that exhaustive key-search attacks on encryption modes secure
in the non-separability of keys sense are slowed down by a factor equal to the
number of blocks in the ciphertext. Our notion is orthogonal to the standard
notions of data-privacy. In particular, the notion by itself does not imply security
as an encryption scheme. It can, however, be used in conjunction with any notion
of data-privacy to define a new encryption goal.

We want to justify the intuition that all-or-nothing encryption modes are
secure encryption modes that also have the key-search resistance property. Recall
that an all-or-nothing encryption mode is formed by composing an AONT with
an ordinary encryption mode. The definition of an AONT from [20], however, is
more of an intuitive nature than of sufficient rigor to establish any claims with it.
One problem with the definition, as pointed out by Boyko [10], is that it speaks of
information leaked about a particular message block. In our context, information
leaked about the message as a whole, say the XOR of all the blocks, can be just
as damaging. A formal characterization of AONTs was later given by Boyko [10].
He makes a case for defining an AONT with respect to any (and variable amount
of) missing information, as opposed to a missing block. While this is certainly
more general and probably necessary in some settings, we believe that in the
context of designing efficient encryption modes with the key-search resistance
property, a formalization with respect to a missing block is preferable. It turns
out that even this weaker formalization is enough to realize our goal through the
all-or-nothing encryption paradigm. An advantage of a weaker characterization
of AONTs, as we will see later, is that we can build more efficient constructions
that meet it. Our characterization of AONTs is tailored to their use in designing
encryption modes that have the desired key-search resistance property.

Our Security Results. We establish that all-or-nothing encryption modes
(using our definition of an AONT) are secure in the non-separability of keys sense
as well as being secure against chosen-plaintext attack. Our analysis relates
the security of the all-or-nothing encryption paradigm to the security of the
underlying AONT in a precise and quantitative way.
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We give an efficient block-cipher-based construction of an AONT. Our con-
struction is a simplified version of Rivest’s “package transform”. The package
transform may well have some stronger security properties than ours, but it turns
out that even our simplified version is secure under our definition of an AONT.
The proof of this is also in the Shannon Model of a block cipher. With this, we
can now get all-or-nothing encryption modes that cost only two times the cost of
normal CBC encryption, while with the package transform, the resulting modes
had cost about three times the cost of CBC.

In addition, we give attacks against alternate paradigms believed to have the
key-search resistance property. We show that a paradigm claimed to capture this
property [7] does not actually do so. There seem to be several misconceptions
about what it takes to capture this property. One of these is that symmetric en-
cryption schemes secure against chosen-ciphertext attack or some even stronger
(data-privacy) notion may already do so. We show otherwise by giving an attack
on a scheme secure in the strongest data-privacy sense yet known.

Related Work. Rivest’s all-or-nothing encryption is not the only way known
to get more security out of a fixed number of key bits. Alternate approaches
include DESX (an idea due to Rivest that was analyzed by Kilian and Rogaway
[17]) and those favoring a long key set-up time, such as the method of Quisquater
et al. [19]. These approaches do not incur the fixed penalty for every encrypted
block that all-or-nothing encryption does, but unlike all-or-nothing encryption,
they cannot work with existing encryption devices and software without changing
the underlying encryption algorithm. In either case, as Rivest points out, the
different approaches are complementary and can be easily combined.

Several approaches to the design of AONTs have been discussed by Rivest
[20]. Our construction, like the package transform, happens to be based on a
block cipher. The hash function based OAEP transform was proven secure in
the Random Oracle Model by Boyko [10]. An information-theoretic treatment
of a weaker form of AONTs has been given by Stinson [22]. Constructions based
solely on the assumption of one-way functions have been given by Canetti et al.
[12]. However, these are somewhat inefficient for practice. Applications of AONTs
go beyond just the one considered in this work. They can be used to make
fixed block-size encryption schemes more efficient [15], reduce communication
requirements [20, 14], and protect against partial key exposure [12].

2 Preliminaries

We use a standard notation for expressing probabilistic experiments and algo-
rithms. Namely, if A(·, ·, . . .) is a probabilistic algorithm then a← A(x1, x2, . . .)
denotes the experiment of running A on inputs x1, x2, . . . and letting a be the
outcome, the probability being over the coins of A. Similarly, if A is a set then
a← A denotes the experiment of selecting a point uniformly from A and assign-
ing a this value.
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Block Ciphers. For any integer l ≥ 1 let Pl denote the space of all (2
l)!

permutations on l bits. A block cipher is a map F : {0, 1}k × {0, 1}l 7→ {0, 1}l.
For every a ∈ {0, 1}k, F (a, ·) ∈ Pl. We define Fa by Fa(x) = F (a, x). Let BC(k, l)
denote the space of all block ciphers with parameters k and l as above.
We model F as an ideal block cipher in the sense of Shannon, in that F is

drawn at random from BC(k, l). Given F ∈ BC(k, l), we define F−1 ∈ BC(k, l)
by F−1(a, y) = F−1

a (y) for a ∈ {0, 1}k. Note that in the experiments to follow
there is no “fixed” cipher; we will refer to an ideal block cipher F , access to
which will be via oracles for F (·, ·) and F−1(·, ·).

Encryption Modes. Formally, an encryption mode based on a block cipher F
is given by a triple of algorithms, Π = (K, E ,D), where

• K, the key generation algorithm, is a probabilistic algorithm that takes a
security parameter k ∈ N (provided in unary) and returns a key a speci-
fying permutations Fa and F

−1
a .

• E , the encryption algorithm, is a probabilistic or stateful algorithm that
takes permutations Fa and F

−1
a (as oracles) and a message x ∈ {0, 1}∗ to

produce a ciphertext y.

• D, the decryption algorithm, is a deterministic algorithm which takes per-
mutations Fa and F

−1
a (as oracles) and ciphertext y to produce either a

message x ∈ {0, 1}∗ or a special symbol ⊥ to indicate that the ciphertext
was invalid.

We require that for all a which can be output by K(1k), for all x ∈ {0, 1}∗, and

for all y that can be output by EFa,F
−1
a (x), we have that DFa,F

−1
a (y) = x. We also

require that K, E and D can be computed in polynomial time. As the notation
indicates, the encryption and decryption algorithms are assumed to have oracle
access to the permutations specified by the key a but do not receive the key a
itself. This is the distinguishing feature of encryption modes over other types of
symmetric encryption schemes.

Notion of Security. We recall a notion of security against chosen-plaintext
attack for symmetric encryption schemes, due to Bellare et al. [2], suitably modi-
fied for encryption modes in the Shannon Model of a block cipher. This itself is an
adaptation to the private-key setting of the definition of “polynomial security”
for public-key encryption given by Goldwasser and Micali [13].

Definition 1. [Indistinguishability of Encryptions] Let Π = (K, E ,D)
be an encryption mode. For an adversary A and b = 0, 1 define the experiment

Experiment Expind
Π (A, b)

F ← BC(k, l); a← K(1k); (x0, x1, s)← AF,F
−1,EFa,F−1

a (find);

y ← EFa,F
−1
a (xb); d← AF,F

−1,EFa,F−1
a (guess, y, s); return d.

Define the advantage of A and the advantage function of Π respectfully, as

follows:

Advind
Π (A) = Pr

[

Expind
Π (A, 1) = 1

]

− Pr
[

Expind
Π (A, 0) = 1

]
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Advind
Π (t,m, p, q, µ) = max

A
{Advind

Π (A)}

where the maximum is over all A with “time-complexity” t, making at most p
queries to F/F−1, choosing |x0| = |x1| such that |y| = ml and making at most q

queries to EFa,F
−1
a , these totaling at most µ bits.

Here the “time-complexity” is the worst case total execution time of experiment
Expind

Π (A, b) plus the size of the code of A, in some fixed RAM model of compu-
tation. This convention is used for other definitions in this paper, as well. The

notation AF,F
−1,EFa,F−1

a indicates an adversary A with access to an encryption
oracle EFa,F

−1
a and oracles for F and F−1. The encryption oracle is provided so

as to model chosen plaintext attacks, while the F/F−1 oracles appear since we
are working in the Shannon Model of a block cipher.

3 Non-Separability of Keys

We give a notion of key-privacy to capture the requirement that every block of
the ciphertext must be “decrypted” before any information about underlying
key (including that the key may not be the “right” one) is known. This notion is
formally captured through a game in which an adversary A is imagined to run
in two stages. In the find stage, A is given two randomly selected keys a0 and
a1, and is allowed to choose a message x along with some state information s.
In the guess stage, it is given a random ciphertext y of the plaintext x, under

one of the selected keys, along with the state information s. Let m = |y|
l
be the

number of blocks in the challenge y. The adversary is given access to oracles for
F and F−1 in both stages. In the guess stage, we impose a restriction that the
adversary may make at most (m− 1) queries to Fa0

/F−1
a0
and at most (m− 1)

queries to Fa1
/F−1

a1
. The adversary “wins” if it correctly identifies which of the

two selected keys was used to encrypt x in the challenge.

Definition 2. [Non-Separability of Keys] Let Π = (K, E ,D) be an en-

cryption mode. For an adversary A and b = 0, 1 define the experiment

Experiment Expnsk
Π (A, b)

F ← BC(k, l); (a0, a1)← K(1
k); (x, s)← AF,F

−1

(find, a0, a1);

y ← EFab
,F−1

ab (x); d← AF,F
−1

(guess, y, s); return d.

Define the advantage of A and the advantage function of Π respectfully, as

follows:

Advnsk
Π (A) = Pr

[

Expnsk
Π (A, 1) = 1

]

− Pr
[

Expnsk
Π (A, 0) = 1

]

Advnsk
Π (t,m, p) = max

A
{Advnsk

Π (A)}

where the maximum is over all A with time complexity t, making at most p

queries to F/F−1 such that, for m = |y|
l
, at most (m − 1) of these are to

Fa0
/F−1

a0
and at most (m− 1) of these are to Fa1

/F−1
a1

in the guess stage.
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Note that this definition only captures a notion concerned with the privacy of
the underlying key. It does not imply security as an encryption scheme. The
notion can be used in conjunction with the data-privacy notions of encryption
schemes. Indeed, it also makes sense to talk about the key-privacy of encryption
modes that are secure under data-privacy notions that are stronger than the one
captured by Definition 1.

Non-Separability of Keys Versus Key-Search. We show that security
in the non-separability of keys sense implies that “key-search” attacks are slowed
down by a factor proportional to the number of blocks in the ciphertext. In-
deed this is the primary motivation of using encryption modes secure in the
non-separability of keys sense. Thus this implication may be taken as evidence of
having a “correct” definition in Definition 2.
In the key-search notion, we measure the success of an adversary A in guessing

the underlying key a given a ciphertext y (of a plaintext x of its choice). The
insecurity of an encryption mode in the key-search sense is given by the maximum
success over all adversaries using similar resources.

Definition 3. [Key-Search] Let Π = (K, E ,D) be an encryption mode. For

an adversary A define the experiment

Experiment Expks
Π (A)

F ← BC(k, l); a← K(1k); (x, s)← AF,F
−1

(select); y ← EFa,F
−1
a (x);

a′ ← AF,F
−1

(predict, y, s); If a′ = a then d← 1 else d← 0; return d.

Define the success of A and the success function of Π respectfully, as follows:

Succks
Π (A) = Pr

[

Expks
Π (A) = 1

]

Succks
Π (t,m, p) = max

A
{Succks

Π (A)}

where the maximum is over all A with time complexity t, making at most p
queries to F/F−1 and choosing |x| such that |y| = ml.

Note that there are no restrictions (for any key) on how many of A’s p queries
to F/F−1 are in the predict stage.

Our first theorem establishes our claim about the implication. We emphasize
that this result, and every other result (on encryption) in this work, are on
encryption modes. In particular, we assume that the encryption and decryption
algorithms can be described given just oracle access to permutations and do not
need the (block-cipher) key specifying these permutations.

Theorem 1. [Non-Separability of Keys Slows Down Key-Search] Sup-
pose Π is an encryption mode using an ideal cipher of key length k and block
length l. Then

Succks
Π (t,m, p) ≤ Advnsk

Π (t′,m, p) +
(

2 ·
⌊ p

m

⌋

+ 4
)

·
1

2k − 1

where t′ = t+O(k +ml + pl).
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The proof of Theorem 1 appears in the full version of this paper [11]. We sketch
only the basic idea here. The proof uses a fairly standard contradiction ar-
gument. Assume B is an adversary in the key-search sense. We construct a
non-separability of keys adversary A, that uses B and has the claimed complex-
ity. A will run B using its oracles to answer B’s queries and then make its guess
based on how B behaves. A complication arises due to the fact that there is a
restriction on the number of queries A can make with the two keys it is given in
the find stage and that B is not subject to this restriction. We get around this
by having A keep track of how many queries B makes using these keys. If B ever
exceeds the amount A is restricted to for one of these keys, then A guesses that
its challenge was encrypted under this key. We then show that the probability
of a false positive is small.

We next give an interpretation of Theorem 1. Say Π is secure in the sense of
Definition 2. Then we know that for reasonable values of t′,m, p the value of the
Advnsk

Π (t′,m, p) is negligible. The theorem says that for a reasonable value of t we
could expect Succks

Π (t,m, p) to be not much more than
(

2 ·
⌊

p
m

⌋

+ 4
)

· 1
2k−1

. This

means that after p queries to F/F−1 there is roughly only a ( p
m
· 2−k) chance

of finding the key. Contrast this with an encryption mode where each query
to F/F−1 could potentially rule out a candidate key. Then we would expect
an (p · 2−k) chance of finding the underlying key. Thus we have succeeded in
reducing the success of a key-search attack by a factor of m, as promised. (The
factor of 2 in the theorem comes about due to the scaling factors implicit in the
advantage function of Definition 2.)

4 Separable Attacks

It is easy to check that none of the commonly used encryption modes, such as
the cipher-block-chaining (CBC) mode and the counter mode (CTR) (see [2] for
a description of these modes) have the key-search resistance property we desire.
There seems to be a belief that some of the existing notions and schemes may
already capture this property. We show that this is unlikely by giving attacks
on some paradigms that cover a large number of “promising” candidates.

Encode-then-Encipher Encryption. The variable-input-length (VIL) enci-
phering paradigm has been suggested in [7] as a practical solution to the problem
of “encrypting” messages of variable and arbitrary lengths to a ciphertext of the
same length. (Since enciphering is deterministic, it cannot be considered to be
secure encryption. However, as pointed out in [8], simply encoding messages with
some randomness, prior to enciphering, is enough to guarantee security as an en-
cryption scheme.) It is claimed in [7] that the VIL paradigm also provides a way
to provably achieve the goal of exhaustive key-search being slowed down pro-
portional to the length of the ciphertext. However, we show that this is not the
case by describing a simple but effective attack on their VIL mode of operation.
The attack is effective even when the messages are encoded before enciphering.
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We point out here (deferring details to the full version of this paper [11]) that
even “super” VIL modes [9] would be susceptible to this attack.
We describe a simplified version of an example of a VIL mode given in [7].

The construction first computes a pseudorandom value by applying a CBC-MAC
on the plaintext. In the second step, the counter mode is used to “encrypt” the
plaintext using the pseudorandom value from the first step as the “counter”.
We now describe a simple attack on this example. Our attack exploits the fact
that for messages longer than a few blocks, most of the blocks in the VIL mode
are being encrypted in the CTR mode. The main ideas of the VIL mode are
on how to pick the “counter” for the CTR mode and on how to format the
last few blocks so as to enable message recoverability while still maintaining
the length requirement. We observe that the attack is effective given any two
blocks of a challenge ciphertext, and moreover, is independent of the “counter”
value. Given, say, just yi = xi⊕Fa(r + i) and yj = xj⊕Fa(r + j), for some
plaintext x = x1 · · ·xn, counter r and indices 1 ≤ i < j ≤ n, there is a test
for any candidate key a′ that requires just two queries to F−1(·, ·). The test is
that the following relationship hold: F−1(a′, yj⊕xj) − F−1(a′, yi⊕xi) = j − i.
This test can be carried out effectively in the VIL mode example and serves to
show that this paradigm in general does not capture the goal of slowing down
exhaustive key-search.

Authenticated Encryption. The most common misconception seems to be
that some of the stronger notions of data-privacy or data-integrity for symmetric
encryption capture the key-search resistance property that we do in Definition 2.
We claim that all of these notions, however strong they may be, are orthogonal to
our notion of key-privacy. We argue this for the case of authenticated encryption,
which is one of the strongest notions of security considered in symmetric encryp-
tion. In particular, this notion implies other strong notions, including security
against chosen-ciphertext attack. Informally described, authenticated encryption
requires that it be infeasible for an adversary to get the receiver to accept as
authentic a string C where the adversary has not already witnessed C. Formal
definitions appear in [4, 8, 16] along with methods to construct such schemes.
One of the generic methods shown to be secure in the authenticated encryption
sense is the “encrypt-then-MAC” paradigm [4]. In this paradigm, a ciphertext
is formed by encrypting the plaintext to a string C using a generic symmetric
encryption scheme secure in the indistinguishability of encryptions sense and then
appending to C the output of a MAC on C. Clearly, if the underlying generic
encryption scheme used does not have the property captured by our key-privacy
notion, then neither would the resulting authenticated encryption scheme.

5 All-Or-Nothing Transforms

The notion of an all-or-nothing transform (AONT) was suggested by Rivest
[20] to enable a paradigm for realizing encryption modes with the key-search
resistance property. The paradigm consists of pre-processing a message with an
AONT and encrypting the result by an “ordinary” encryption mode. We give
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a systematic treatment of AONTs in this section. The paradigm itself will be
discussed in Section 6.

Syntax. Formally, the syntax of an un-keyed AONT is given by a pair of algo-
rithms, Π = (E ,D), where

• E , the encoding algorithm, is a probabilistic algorithm that takes a message
x ∈ {0, 1}∗ to produce a pseudo-ciphertext y.

• D, the decoding algorithm, is a deterministic algorithm which takes a
pseudo-ciphertext y to produce either a message x ∈ {0, 1}∗ or a special
symbol ⊥ to indicate that the pseudo-ciphertext was invalid.

We require that for all x ∈ {0, 1}∗, and for all y that can be output by E(x),
we have that D(y) = x. We also require that E and D be polynomial-time
computable.

Notion of Security.We give a new definition of security for AONTs. A block-
length l will be associated with an AONT. During the adversary’s find stage it
comes up with a message and some state information. The challenge is either
a pseudo-ciphertext y0 corresponding to the chosen plaintext x or a random
string y1 of the same length as y0. In the guess stage, it is allowed to adaptively
see all but one of the challenge blocks and guess whether the part of challenge
it received corresponds to y0 or y1.

Definition 4. [All-Or-Nothing Transforms] Let Π = (E ,D) be an AONT
of block length l. For an adversary A and b = 0, 1 define the experiment

Experiment Expaon
Π (A, b)

(x, s)← A(find);
y0 ← E(x);
y1 ← {0, 1}

|y0|; // (yb = yb[1] · · · yb[m] where |yb[i]| = l for i ∈ {1, · · · , m})

d← AY(guess, s); // (Y takes an index j ∈ {1, . . . , m} and returns yb[j])

return d.

Define the advantage of A and the advantage function of Π respectfully, as

follows:

Advaon
Π (A) = Pr

[

Expaon
Π (A, 1) = 1

]

− Pr
[

Expaon
Π (A, 0) = 1

]

Advaon
Π (t,m) = max

A
{Advaon

Π (A)}

where the maximum is over all A with time complexity t, choosing |x| such that

|y0| = ml and making at most (m− 1) queries to Y.

Our formalization differs from that given by Boyko [10] in some significant ways.
We require that the missing information be a block as opposed to some variable
number of bits anywhere in the output. This captures a weaker notion, but as
argued earlier, this is not necessarily a drawback. A consequence of this is that
we are able to design more efficient AONTs. Notice that, in our missing-block
formalization, we ask for the indistinguishability of the AONT output (with a
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missing block) from a random string of the same length. This is in contrast to the
typical “indistinguishability of outputs on two inputs” required by [10] or any
of the indistinguishability-based notions of encryption. We give some intuition
for the need for this strengthening here. Consider a transform that added some
known redundancy to every block (say, the first bit of every output block was
always a 0). This alone would not make a transform insecure if we had used the
“indistinguishability of outputs on two inputs” formulation for capturing all-or-
nothingness, since the outputs on every input would have this same redundancy.
However under our formulation we will find such a transform to be insecure
since the random string would not necessarily have this redundancy. It turns
out that if the all-or-nothing encryption paradigm is to have the key-search
resistance property then such transforms cannot be considered to be secure as
AONTs. Recall that the paradigm is to use an “ordinary” encryption mode on
the output of an AONT. It is easy to see that it is essential that a key-search
adversary “decrypting” one block of ciphertext should not be able to figure out
if the decrypted value was the output of an AONT or not.

We have so far assumed the standard model, but we will often want to con-
sider AONTs in some stronger model like the Random Oracle Model or the
Shannon Model. Definition 4 can be suitably modified to accommodate these.
For example, with the Shannon Model of an ideal block cipher F , we will assume
that all parties concerned have access to F and F−1 oracles. The queries made
to F/F−1 become a part of the definition. We will define Advaon

Π (t,m, p) rather
than Advaon

Π (t,m), where in addition to the usual parameters, p is the maximum
number of queries allowed to F/F−1.

Construction.We give a construction based on the CTR mode of encryption.
We describe the transform CTRT = (E-CTRT,D-CTRT) of block length l, using
an ideal cipher F with key length k and block length l, where k ≤ l. (This
condition can be easily removed and is made here only for the sake of exposition.)
The message x to be transformed is regarded as a sequence of l-bit blocks,

x = x[1] . . . x[n] (padding is done first, if necessary). We define E-CTRTF,F
−1

(x)

and D-CTRTF,F
−1

(x′), as follows:

Algorithm E-CTRTF,F
−1

(x[1] . . . x[n])
K ′ ← {0, 1}l

K = K ′ mod 2k // (|K| = k)

for i = 1, . . . , n do

x′[i] = x[i]⊕FK(i)
x′[n+ 1] = K ′⊕x′[1]⊕ . . .⊕x′[n]
return x′[1] . . . x′[n+ 1]

Algorithm D-CTRTF,F
−1

(x′)
Parse x′ as x′[1] . . . x′[n+ 1]
K ′ = x′[1]⊕ · · · ⊕ x′[n+ 1]
K = K ′ mod 2k // (|K| = k)

for i = 1, . . . , n do

x[i] = x′[i]⊕FK(i)
return x[1] . . . x[n]

CTRT is a variant of Rivest’s package transform [20] where one “pass” has been
skipped altogether. Yet we find it to be secure in the sense of Definition 4.

Theorem 2. [Security of CTRT] Suppose transform CTRT of block length l
uses an ideal cipher of key length k and block length l (where k ≤ l). Then for
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any t,m, p such that m+ p ≤ 2k−1,

Advaon
CTRT(t,m, p) ≤

m2 + 8 · p

2k

The proof of this theorem appears in the full version of this paper [11]. We
mention here only some of the key aspects of the proof. As long as at least one
block of the output is missing, the key K used to “encrypt” the message blocks
is information theoretically hidden. The main step in the analysis is to bound
the probability of an adversary calling its oracles with key K. In doing this,
we need to be particularly careful with the fact that we allow adversaries to
be adaptive. Another issue that complicates matters is the injectivity of ideal
ciphers. For example, we cannot conclude that if an adversary has never queried
its oracles with key K, then its “challenges” must be indistinguishable to it.
The injectivity makes certain conditions impossible with the “AONT-derived”
challenge that are possible with the “random” challenge.

It is conceivable that the package transform of Rivest [20] is actually secure
in the strong sense captured by Boyko [10]. CTRT, on the other hand, is clearly
insecure in that strong sense. (Note that CTRT would also have been secure in
the sense given by Rivest [20].) However, as we will see next, it turns out that
CTRT is strong enough that when used to realize the all-or-nothing encryption
paradigm, the resulting mode will have the properties we desire.

6 All-Or-Nothing Encryption

The all-or-nothing encryption paradigm consists of composing an AONT with an
“ordinary” encryption mode. We study the particular case when the ordinary
encryption mode is the codebook (ie. ECB) mode. It is easy to see that the
codebook mode by itself is not secure encryption. However it does have many
advantages over some of the other modes. In particular, it is simple, efficient,
length-preserving, and admits an efficient parallel implementation. Following
[20], we will refer to an AONT followed by the codebook mode as the “all-or-
nothing codebook mode”. We will establish the security of the all-or-nothing
codebook mode in the theorems to follow. Similar results can be derived when
some other reasonable mode is used in place of the codebook mode.

The all-or-nothing codebook mode is first and foremost a secure encryption
scheme. We establish this in the following theorem.

Theorem 3. [Security in the indistinguishability of encryptions sense] Sup-
pose Π = (K, E ,D) is an all-or-nothing codebook mode using an ideal cipher of
key length k and block length l and an all-or-nothing transform Π ′ = (E ′,D′) of
block length l. Let T be the time to decode a ml bit string using D′ and nl be the
length of a decoded ml bit string. Then for any n ≥ 2 and any p, q, µ,

Advind
Π (t,m, p, q, µ) ≤ 2m · Adv

aon
Π′ (t

′,m) +
2mp

2k
+
2m

2l

where t′ = t+ (µ
l
+m− 1) · T +O(ml + pl + µ).
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The proof of this theorem appears in the full version of this paper [11]. The intu-
ition behind the result is as follows. An AONT has the property that the chances
of a collision amongst the blocks of its output (even across multiple queries made
by an adaptive adversary) is small. Thus when an AONT is composed with the
codebook mode, we have that with high probability each block of the ciphertext
is a result of having enciphered on a new point. Note that although the code-
book mode is deterministic, the fact that the AONT itself is probabilistic makes
the resulting all-or-nothing codebook mode probabilistic. The main part of the
proof is in formalizing and establishing this property of AONTs. We show that
if this property did not hold for some transform, then that transform could not
be secure as an AONT.

We next show that the all-or-nothing codebook mode also has the desired
key-search resistance property.

Theorem 4. [Security in the non-separability of keys sense] Suppose Π =
(K, E ,D) is an all-or-nothing codebook mode using an ideal cipher of key length k
and block length l and an all-or-nothing transform Π ′ = (E ′,D′) of block length l.
Then

Advnsk
Π (t,m, p) ≤ 2m · Advaon

Π′ (t
′,m)

where t′ = t+O(ml + pl).

Proof. We use a contradiction argument to prove this. Let B be an adversary
in the non-separability of keys sense. We construct an all-or-nothing adversary A,
that uses B and has the claimed complexity.

Since we are assuming an all-or-nothing adversary A that does not receive F/F−1

oracles, these must be simulated when running B. The cost of this simulation
will appear in the time complexity of A.

We use the notation (+,K, z) (respectively, (−,K, z)) to indicate a query to F
(respectively, F−1) with key K and a l-bit string z; the expected response being
FK(z) (respectively, F

−1
K (z)).

For an integer m let [m] = {1, · · · ,m}. For an ml bit string z let z = z[1] · · · z[m]
such that |z[i]| = l for i ∈ [m].

The adversary A using adversary B is given in Figure 1. The idea is the fol-
lowing: A first picks two keys a0, a1 to simulate the experiment underlying
non-separability of keys for B. It runs B, answering all of its queries by simu-
lating the oracles, until B ends its find stage by returning some string x. A
returns x as the output of its own find stage. In its guess stage, A will pick a
random bit d and an index j. A will then ask its oracle Y for all but the j-th
challenge block. It then uses the key ad to encipher these blocks to get all blocks
of a string z other than z[j]. A assigns a random value to z[j] and then runs B’s
guess stage with the challenge being z. It will simulate B’s oracles as before, but
halt if B ever asks the query (−, ad, z[j]) or (+, ad, F

−1
ad
(z[j])). If B was halted,

then A outputs a random bit as its guess. Otherwise, it checks to see if B was
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correct. A guesses that its challenge must have been “real” if B is correct and
outputs a random bit otherwise.

Algorithm A(find)

a0, a1 ← K(1
k)

run B(find, a0, a1) using SimBOr
let (x, s) be the output of B

s′ ← (s, x, a0, a1)
return (x, s′)

Subroutine SimBOr
if B makes a query (+, K, u)
then answer B with FK(u)

if B makes a query (−, K, u)
then answer B with F−1

K (u)

Algorithm AY(guess, (s, x, a0, a1))
d← {0, 1}
j ← [m]
for (i ∈ [m]) ∧ (i 6= j) do

y[i]← Y(i)
z[i]← Fad

(y[i])

z[j]← {0, 1}l

run B(guess, z, s) using SimBOr until
B makes a query (−, ad, z[j]) or
B makes a query (+, ad, F−1

ad
(z[j])) or

B halts
if B halts then let d′ be its output
else b′ ← {0, 1}

if d′ = d then b′ ← 0 else b′ ← {0, 1}
return b′

Fig. 1. An all-or-nothing adversary using a non-separability of keys adversary

From the description, we have that the time complexity t′ = t+O(ml + pl).

Next we compute the advantage function. For b ∈ {0, 1} let Probability Space b
be that of the following underlying experiment:

(x, s′)← A(find); y0 ← E
′(x); y1 ← {0, 1}

ml; Y(i) = yb[i] for i ∈ [m] :

For b ∈ {0, 1} let Prb[ · ] denote the probability under Probability Space b.

Advaon
Π′ (A)

def
= Pr0[A

Y(guess, s′) = 0 ]− Pr1[A
Y(guess, s′) = 0 ]

Hereafter, we suppress the superscripts and parenthesized parts for clarity.

Let Fail be the event that B makes a query (−, ad, z[j]) or (+, ad, F
−1
ad
(z[j]))

where j is the index of the block in y that A does not receive, z[j] is the random
block picked by A and d ∈ {0, 1} is the bit that selects the key a0 or a1. We have

Advaon
Π′ (A)

def
= Pr0[A = 0 ]− Pr1[A = 0 ]

= Pr0 [A = 0 | Fail ] · Pr0[Fail ] + Pr0
[

A = 0 | Fail
]

· Pr0[Fail ]−

Pr1 [A = 0 | Fail ] · Pr1[Fail ]− Pr1
[

A = 0 | Fail
]

· Pr1[Fail ]

Now from the description of A we have:

Pr0[Fail ] = Pr1[Fail ] =
m− 1

m
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Pr0 [A = 0 | Fail ] = Pr1 [A = 0 | Fail ] = 0.5

Pr0
[

A = 0 | Fail
]

= Pr0[B guesses correctly ] = 0.5 + 0.5 · Adv
nsk
Π (B)

Pr1
[

A = 0 | Fail
]

= Pr1[B guesses correctly ] = 0.5

The derivation of these equalities is quite straightforward. The only one requiring
explanation is the last one. To determine Pr1[B guesses correctly ] we recall that
in Probability Space 1 the challenge z that B receives is the codebook output with
key ad on a random string y1. The probability we want is that of B guessing
d correctly. Given that B does not see y1, but just the output z under the
codebook mode with an ideal cipher, it is easy to see that the probability is
exactly as claimed. Continuing with the advantage, we have

Advaon
Π′ (A) =

1

m
·

(

1

2
+
1

2
· Advnsk

Π (B)−
1

2

)

=
1

2m
· Advnsk

Π (B)

From this, we get the claimed relationship in the advantage functions.

We have assumed in our treatment of the all-or-nothing encryption paradigm
that the block size associated with the AONT is the same as that of the encryp-
tion mode following it. This assumption could be easily removed by making a
few changes to our framework. However, in this form, it has certain implications
when a block-cipher based construction, like CTRT, is used as the underlying
AONT. We would require that the key space for the AONT block cipher be
sufficiently large that brute force searches are infeasible. The block cipher used
in the AONT does not have to be the same as that used to encrypt its output,
though it certainly could be.

7 Comments and Open Problems

Our notions and proofs are in the Shannon Model of a block cipher. The model
makes some strong assumptions and may be unsuitable for some of today’s block
ciphers with their delicate key schedules. This raises the concern that our results
may not be telling us much about the “real-world”. However, we claim that the
results proven in this model are still meaningful since they permit “generic”
attacks (ie. attacks that assume the underlying primitives to be “ideal”). In
practice, most attacks disregard the cryptanalytic specifics of the block cipher
anyway and instead treat it as a black-box transformation.
Our use of the Shannon Model for capturing non-separability of keys was

driven by the need to correctly and usefully formalize the notion. It is hard
to see how this could have been done in the standard model. In establishing our
claims about all-or-nothing encryption modes, we used a definition of an AONT
from the standard model. (Things would change very little if we had instead
started with a definition from one of the other models.) However, to prove that
our CTRT transform was secure as an AONT, we needed to work in the Shannon
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Model. It may be possible to prove such constructions in the standard model or
perhaps some other weaker model, but this is something that is currently un-
known. Note that we do know that there are AONTs that can be proven secure
in the standard model [12]. However, for efficiency reasons, we do not consider
these to be viable options in practice.
In the case of CTRT being used as the AONT, the cost of the resulting

all-or-nothing codebook mode would be a factor of only two greater than CBC.
From our results, we get that the resulting all-or-nothing codebook mode would
be secure in the non-separability of keys sense, as well as being secure against
chosen-plaintext attack. It would be interesting to see if all-or-nothing encryption
modes (with some modifications, if required) could be shown to be secure against
chosen-ciphertext attack.
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